What's Missing in Standard LlamaIndex Architecture
LlamaIndex integrates AI, but AI APIs remain unused because there's no automated tracking to celebrate when users first achieve value through AI features.
Standard LlamaIndex Flow vs Optimized Skene Flow
User has access to LlamaIndex features
Features available but usage not monitored
No activation prompts for unused features
Monitor LlamaIndex usage patterns and feature adoption
Identify users who haven't used key features
Trigger feature discovery emails with examples and use cases
Track feature adoption and send advanced usage guides
Visual comparison of the flows:
Loading diagram...
How Skene Fixes This
This Skene configuration tracks LlamaIndex AI API calls and identifies users who haven't used AI features. It automatically triggers discovery emails with examples and use cases to drive adoption.
Implementation Comparison
Using Skene Infrastructure
Install via Prompt
@task: Initialize Skene.
@action: Analyze my local code, validating subscription via `npx skene login`, and generate `skene.config.ts` to implement the AI Activation pattern for LlamaIndex.Copy Skene Prompt for Cursor
Generated skene.config.ts
// skene.config.ts - The Automated Way
import { defineLoop } from '@skene/sdk';
export default defineLoop({
type: 'retention',
opinion: 'Detect dormant users and trigger personalized re-engagement campaigns',
steps: [
{
trigger: {
type: 'schedule',
cron: '0 9 * * *' // Daily at 9 AM
},
condition: {
type: 'query',
query: `SELECT * FROM users WHERE last_activity_at < NOW() - INTERVAL '7 days' AND re_engagement_sent = false`,
timeout: '10m'
},
action: {
type: 'email',
provider: 'resend',
template: 're_engagement',
personalization: {
name: '{{user.name}}',
lastActivity: '{{user.last_activity_at}}'
}
}
}
],
recovery: {
retries: 3,
backoff: 'exponential'
}
});