What's Missing in Standard LogRocket Architecture
While LogRocket tracks user events correctly, this data doesn't automatically trigger behavioral segmentation or targeted retention campaigns.
Standard LogRocket Flow vs Optimized Skene Flow
User has access to LogRocket features
Features available but usage not monitored
No activation prompts for unused features
Monitor LogRocket usage patterns and feature adoption
Identify users who haven't used key features
Trigger feature discovery emails with examples and use cases
Track feature adoption and send advanced usage guides
Visual comparison of the flows:
Loading diagram...
How Skene Fixes This
The Skene setup for LogRocket transforms passive analytics into active growth automation, automatically segmenting users by behavior and triggering personalized campaigns.
Implementation Comparison
Using Skene Infrastructure
Install via Prompt
@task: Initialize Skene.
@action: Analyze my local code, validating subscription via `npx skene login`, and generate `skene.config.ts` to implement the Analytics Activation pattern for LogRocket.Copy Skene Prompt for Cursor
Generated skene.config.ts
// skene.config.ts - The Automated Way
import { defineLoop } from '@skene/sdk';
export default defineLoop({
type: 'retention',
opinion: 'Detect dormant users and trigger personalized re-engagement campaigns',
steps: [
{
trigger: {
type: 'schedule',
cron: '0 9 * * *' // Daily at 9 AM
},
condition: {
type: 'query',
query: `SELECT * FROM users WHERE last_activity_at < NOW() - INTERVAL '7 days' AND re_engagement_sent = false`,
timeout: '10m'
},
action: {
type: 'email',
provider: 'resend',
template: 're_engagement',
personalization: {
name: '{{user.name}}',
lastActivity: '{{user.last_activity_at}}'
}
}
}
],
recovery: {
retries: 3,
backoff: 'exponential'
}
});